
Privacy-Preserving Set Operations

Lea Kissner Dawn Song

February 2005 – Last modified June 2005
CMU-CS-05-113

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In many important applications, a collection of mutually distrustful parties must perform private
computation over multisets. Each party’s input to the function is his private input multiset. In order
to protect these private sets, the players perform privacy-preserving computation; that is, no party
learns more information about other parties’ private input sets than what can be deduced from the
result. In this paper, we propose efficient techniques for privacy-preserving operations on multisets.
By employing the mathematical properties of polynomials, we build a framework of efficient, secure,
and composable multiset operations: the union, intersection, and element reduction operations. We
apply these techniques to a wide range of practical problems, achieving more efficient results than
those of previous work.

This research was supported in part by the Center for Computer and Communications Security at Carnegie
Mellon under grant DAAD19-02-1-0389 from the Army Research Office. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either express or implied, of ARO, Carnegie Mellon University, or the U.S. Government or any of its agencies.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Privacy-Preserving Set Operations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

39

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: private multiset operations, secure multi-party computation, privacy, intersection,
threshold, union, element reduction

1 Introduction

Private computation over sets and multisets is required in many important applications. In the
real world, parties often resort to use of a trusted third party, who computes a fixed function on
all parties’ private input multisets, or forgo the application altogether. This unconditional trust
is fraught with security risks; the trusted party may be dishonest or compromised, as it is an
attractive target. We design efficient privacy-preserving techniques and protocols for computation
over multisets by mutually distrustful parties: no party learns more information about other parties’
private input sets than what can be deduced from the result of the computation.

For example, to determine which airline passengers appear on a ‘do-not-fly’ list, the airline
must perform a set-intersection operation between its private passenger list and the government’s
list. This is an example of the Set-Intersection problem. If a social services organization needs
to determine the list of people on welfare who have cancer, the union of each hospital’s lists of
cancer patients must be calculated (but not revealed), then an intersection operation between the
unrevealed list of cancer patients and the welfare rolls must be performed. This problem may
be efficiently solved by composition of our private union and set-intersection techniques. Another
example is privacy-preserving distributed network monitoring. In this scenario, each node monitors
anomalous local traffic, and a distributed group of nodes collectively identify popular anomalous
behaviors: behaviors that are identified by at least a threshold t number of monitors. This is an
example of the Over-Threshold Set-Union problem.

Contributions. In this paper, we propose efficient techniques for privacy-preserving operations
on multisets. By building a framework of set operations using polynomial representations and em-
ploying the mathematical properties of polynomials, we design efficient methods to enable privacy-
preserving computation of the union, intersection, and element reduction1 multiset operations.

An important feature of our privacy-preserving multiset operations is that they can be com-
posed, and thus enable a wide range of applications. To demonstrate the power of our techniques,
we apply our operations to solve specific problems, including Set-Intersection, Cardinality Set-
Intersection, Over-Threshold Set-Union, and Threshold Set-Union, as well as determining the Sub-
set relation. Furthermore, we show that our techniques can be used to efficiently compute the
output of any function over multisets expressed in the following grammar, where s represents any
set held by some player and d ≥ 1:

Υ ::= s | Rdd(Υ) | Υ ∩Υ | s ∪Υ | Υ ∪ s

Note that any monotonic function over multisets2 can be expressed using our grammar, showing
that our techniques have truly general applicability. Finally, we show that our techniques are
applicable even outside the realm of set computation. As an example, we describe how to utilize
our techniques to efficiently and privately evaluate CNF boolean functions.

Our protocols are more efficient than the results obtained from previous work. General multi-
party computation is the best previous result for most of the problems that we address in this paper.
Only the private Set-Intersection problem and two-party Cardinality Set-Intersection problem have
been previously studied [13]. However, previous work only provides protocols for 3-or-more-party

1The element reduction by d, Rdd(A), of a multiset A is the multiset composed of the elements of A such that for
every element a that appears in A at least d′ > d times, a is included d′ − d times in Rdd(A).

2Any function computed with only intersection and union, without use of an inverse operation.

1

Communication Communication Communication
Problem Complexity of Complexity of Complexity of

our solution previous solution general MPC
Set-Intersection (HBC) O(cnk lg |P |) O(n2k lg |P |) [13] O(n2k polylog(k) lg |P |)
Set-Intersection (Malicious) O(n2k lg |P |) none O(n3k polylog(k) lg |P |)
Cardinality Set-Intersection (HBC) O(n2k lg |P |) none O(n2k polylog(k) lg |P |)
Over-Threshold Set-Union (HBC) O(n2k lg |P |) none O(n2k polylog(nk) lg |P |)
Threshold Set-Union (HBC) O(n2k lg |P |) none O(n2k polylog(nk) lg |P |)
Subset (HBC) O(k lg |P |) none O(k polylog(k) lg |P |)

Table 1: Total communication complexity comparison for our multiparty protocols, previous solu-
tions, and general multiparty computation. There are n ≥ 2 players, c < n dishonestly colluding,
each with an input multiset of size k. The domain of the multiset elements is P . Security parameters
are not included in the communication complexity.

Set-Intersection secure only against honest-but-curious players; it is not obvious how to extend
this work to achieve security against malicious players. Also, previous work focuses on achieving
results for the Set-Intersection problem in isolation – these techniques cannot be used to compose
set operations. In contrast, we provide efficient solutions for private multi-party Set-Intersection
secure against malicious players, and our multiset intersection operator can be easily composed
with other operations to enable a wide range of efficient private computation over multisets. We
compare the communication complexity of our protocols with previous work and solutions based
on general multiparty communication in Table 1. Note that the techniques utilized to create
the circuits for the general solution are both complex and incur very large constants, on top of
the constants inherent in the use of general multiparty computation [1]; we thus achieve greater
practical efficiency, as well as asymptotic efficiency.

Our protocols are provably secure in the PPT-bounded adversary model. We consider both
standard adversary models: honest-but-curious adversaries (HBC) and malicious adversaries. For
protocols secure in the HBC model, we prove that the information learned by any coalition of
honest-but-curious players is indistinguishable from the information learned in the ideal model,
where a trusted third party (TTP) calculates the function. For protocols secure in the malicious
model, we provide simulation proofs showing that for any strategy followed by a malicious coalition
Γ in the real protocol, there is a translated strategy they could follow in the ideal model, such that,
to Γ, the real execution is computationally indistinguishable from ideal execution.

Outline. We discuss related work in Section 2. In Section 3, we introduce our adversary models,
as well as our cryptographic tools. We describe our privacy-preserving set operation techniques in in
Section 4. Section 5 gives protocols, secure against honest-but-curious players, and security analysis
for the Set-Intersection and Cardinality Set-Intersection problems. Section 6 gives protocols, secure
against honest-but-curious players, and security analysis for the Over-Threshold Set-Union problem,
as well for several variants of the Threshold Set-Union problem. We introduce techniques and
protocols secure against malicious players for the Set-Intersection, Cardinality Set-Intersection, and
Over-Threshold Set-Union problems in Section 7. Finally, we discuss several additional applications
of our techniques in Section 8, including the subset protocol, general privacy-preserving computation

2

over sets, and evaluation of CNF boolean formulas.

2 Related Work

For most of the privacy-preserving set function problems we address in this paper (except for
the Set-Intersection problem), the best previously known results are through general multiparty
computation. General two-party computation was introduced by Yao [28], and general computation
for multiple parties was introduced in [2]. In general multiparty computation, the players share
the values of each input, and cooperatively evaluate the circuit. For each multiplication gate, the
players must cooperate to securely multiply their inputs and re-share the result, requiring O(n)
communication for honest-but-curious players and O(n2) communication for malicious players [16].
Recent results that allow non-interactive private multiplication of shares [8] do not extend to our
adversary model, in which any c < n players may collude. Our results are more efficient than the
general MPC approach; we compare communication complexity in Table 1.

The most relevant work to our paper is by Freedman, Nissim, and Pinkas (FNP) [13]. They
proposed protocols for the problems related to Set-Intersection, based on the representation of
sets as roots of a polynomial [13]. Their work does not utilize properties of polynomials beyond
evaluation at given points. We explore the power of polynomial representation of multisets, using
operations on polynomials to obtain composable privacy-preserving multisets operations. We give
a more detailed comparison of our Set-Intersection protocol with FNP in Table 1 and in Section 1.

Much work has been done in designing solutions for privacy-preserving computation of different
functions. For example, private equality testing is the problem of set-intersection for the case in
which the size of the private input sets is 1. Protocols for this problem are proposed in [10, 24, 22],
and fairness is added in [3]. We do not enumerate the works of privacy-preserving computation of
other functions here, as they address drastically different problems and cannot be applied to our
setting.

3 Preliminaries

The notation used in this paper is described in Appendix A. In this section, we describe our
adversary models and the cryptographic tools used in this paper.

3.1 Adversary Models

In this paper, we consider two standard adversary models: honest-but-curious adversaries and ma-
licious adversaries. We provide intuition and informal definitions of these models; formal definitions
of these models can be found in [16].

Honest-But-Curious Adversaries. In this model, all parties act according to their prescribed
actions in the protocol. Security in this model is straightforward: no player or coalition of c < n
players (who cheat by sharing their private information) gains information about other players’
private input sets, other than what can be deduced from the result of the protocol. This is formalized
by considering an ideal implementation where a trusted third party (TTP) receives the inputs of the
parties and outputs the result of the defined function. We require that in the real implementation

3

of the protocol—that is, one without a TTP—each party does not learn more information than in
the ideal implementation.

Malicious Adversaries. In this model, an adversary may behave arbitrarily. In particular, we
cannot hope to prevent malicious parties from refusing to participate in the protocol, choosing
arbitrary values for its private input set, or aborting the protocol prematurely. Instead, we focus
on the standard security definition (see, e.g., [16]) which captures the correctness and the privacy
issues of the protocol. Informally, the security definition is based on a comparison between the
ideal model and a TTP, where a malicious party may give arbitrary input to the TTP. The security
definition is also limited to the case where at least one of the parties is honest. Let Γ be the
set of colluding malicious parties; for any strategy Γ can follow in the real protocol, there is a
translated strategy that it could follow in the ideal model, such that, to Γ, the real execution is
computationally indistinguishable from execution in the ideal model.

3.2 Additively Homomorphic Cryptosystem

In this paper we utilize a semantically secure [17], additively homomorphic public-key cryptosystem.
Let Epk(·) denote the encryption function with public key pk. The cryptosystem supports the
following operations, which can be performed without knowledge of the private key: (1) Given the
encryptions of a and b, Epk(a) and Epk(b), we can efficiently compute the encryption of a + b,
denoted Epk(a + b) := Epk(a) +h Epk(b); (2) Given a constant c and the encryption of a, Epk(a),
we can efficiently compute the encryption of ca, denoted Epk(c · a) := c ×h Epk(a). When such
operations are performed, we require that the resulting ciphertexts be re-randomized for security.
In re-randomization, a ciphertext is transformed so as to form an encryption of the same plaintext,
under a different random string than the one originally used. We also require that the homomorphic
public-key cryptosystem support secure (n, n)-threshold decryption, i.e., the corresponding private
key is shared by a group of n players, and decryption must be performed by all players acting
together.

In our protocols for the malicious case, we require: (1) the decryption protocol be secure
against malicious players, typically, this is done by requiring each player to prove in zero-knowledge
that he has followed the threshold decryption protocol correctly [15]; (2) efficient construction of
zero-knowledge proofs of plaintext knowledge; (3) optionally, efficient construction of certain zero-
knowledge proofs, as detailed inSection 7.1.

Note that Paillier’s cryptosystem [26] satisfies each of our requirements: it is additively homo-
morphic, supports ciphertexts re-randomization and threshold decryption (secure in the malicious
case) [11, 12], and allows certain efficient zero-knowledge proofs (standard constructions from [6, 4],
and proof of plaintext knowledge [7]).

In the remainder of this paper, we simply use Epk(·) to denote the encryption function of the
homomorphic cryptosystem which satisfies all the aforementioned properties.

3.3 Shuffle Protocol

Each player i (1 ≤ i ≤ n) has a private input multiset Vi. We define the Shuffle problem as follows:
all players learn the joint multiset V1 ∪ · · · ∪ Vn, such that no player or coalition of players Γ can
gain a non-negligible advantage in distinguishing, for each element a ∈ V1 ∪ · · · ∪ Vn, an honest
player i (1 ≤ i ≤ n, i 6∈ Γ) such that a ∈ Vi.

4

In several protocols in this paper, we will impose an additional privacy condition on the Shuffle
problem; the multisets V1, . . . , Vn are composed of ciphertexts, which must be re-randomized so
that no player may determine which ciphertexts were part of his private input multiset. The
revised problem statement is as follows: all players learn the joint multiset V1 ∪ · · · ∪ Vn, such that
no player or coalition of players can gain a non-negligible advantage in distinguishing, for each
element a ∈ V1 ∪ · · · ∪ Vn, an honest player i (1 ≤ i ≤ n) such that a ∈ Vi.

Both variants of the Shuffle protocol can be easily accomplished with standard techniques [5,
18, 9, 14, 25], with communication complexity at most O(n2k).

4 Techniques and Mathematical Intuition

In this section, we introduce our techniques for privacy-preserving computation of operations on
multisets.

Problem Setting. Let there be n players. We denote the private input set of player i as Si, and
|Si| = k (1 ≤ i ≤ n). We denote the jth element of set i as (Si)j . We denote the domain of the
elements in these sets as P , (∀i∈[n],j∈[k] (Si)j ∈ P).

Let R denote the plaintext domain Dom(Epk(·)) (in Paillier’s cryptosystem, R is ZN). We
require that R be sufficiently large that an element a drawn uniformly from R has only negligible
probability of representing an element of P , denoted a ∈ P . For example, we could require that
only elements of the form b = a || h(a) could represent an element in P . That is, there exists an
a of proper length such that b = a || h(a). If |h(·)| = lg

(
1
ε

)
, then there is only ε probability that

a′ ← R represents an element in P .
In this section, we first give background on polynomial representation of multisets, as well as

the mathematical properties of polynomials that we use in this paper. We then introduce our
privacy-preserving (TTP model) set operations using polynomial representations, then show how
to achieve privacy in the real setting by calculating them using encrypted polynomials. Finally, we
overview the applications of these techniques explored in the rest of the paper.

4.1 Background: Polynomial Rings and Polynomial Representation of Sets

The polynomial ring R[x] consists of all polynomials with coefficients from R. Let f, g ∈ R[x], such
that f(x) =

∑deg(f)
i=0 f [i]xi, where f [i] denotes the coefficient of xi in the polynomial f . Let f + g

denote the addition of f and g, f ∗ g denote the multiplication of f and g, and f (d) denote the dth
formal derivative of f . Note that the formal derivative of f is

∑deg(f)−1
i=0 (i + 1)f [i + 1]xi.

Polynomial Representation of Sets. In this paper, we use polynomials to represent multisets.
Given a multiset S = {Sj}1≤j≤k, we construct a polynomial representation of S, f ∈ R[x], as
f(x) =

∏
1≤j≤k(x − Sj). On the other hand, given a polynomial f ∈ R[x], we define the multiset

S represented by the polynomial f as follows: an element a ∈ S if and only if (1) f(a) = 0 and
(2) a represents an element from P . Note that our polynomial representation naturally handles
multisets: The element a appears in the multiset b times if (x− a)b | f ∧ (x− a)b+1 6 | f .

Note that previous work has proposed to use polynomials to represent sets [13] (as opposed
to multisets). However, to the best of our knowledge, previous work has only utilized the tech-
nique of polynomial evaluation for privacy-preserving operations. As a result, previous work is

5

limited to set intersection and cannot be composed with other set operators. In this paper, we
propose a framework to perform various set operations using polynomial representations and con-
struct efficient privacy-preserving set operations using the mathematical properties of polynomials.
By utilizing polynomial representations as the intermediate form of representations of sets, our
framework allows arbitrary composition of set operators as outlined in our grammar.

4.2 Our Techniques: Privacy-Preserving Set Operations

In this section, we construct algorithms for computing the polynomial representation of operations
on sets, including union, intersection, and element reduction. We design these algorithms to be
privacy-preserving in the following sense: the polynomial representation of any operation result
reveals no more information than the set representation of the result. First, we introduce our
algorithms for computing the polynomial representation of set operations union, intersection, and
element reduction (with a trusted third party). We then extend these techniques to encrypted
polynomials, allowing secure implementation of our techniques without a trusted third party. Note
that the privacy-preserving set operations defined in this section may be arbitrarily composed (see
Section 8.1), and constitute truly general techniques.

4.2.1 Set Operations Using Polynomial Representations

In this section, we introduce efficient techniques for set operations using polynomial representations.
In particular, let f, g be polynomial representations of the multisets S, T . We describe techniques
to compute the polynomial representation of their union, intersection, and element reduction by
d. We design our techniques so that the polynomial representation of any operation result reveals
no more information than the set representation of the result. This privacy property is formally
stated in Theorems 1, 3, and 5, by comparing to the ideal model.

Union. We define the union of multisets S∪T as the multiset where each element a that appears
in S bS ≥ 0 times and T bT ≥ 0 times appears in the resulting multiset bS + bT times. We compute
the polynomial representation of S ∪T as follows, where f and g are the polynomial representation
of S and T respectively:

f ∗ g.

Note that f ∗ g is a polynomial representation of S ∪ T because (1) all elements that appear in
either set S or T are preserved: (f(a) = 0)∧ (g(b) = 0)→ ((f ∗ g)(a) = 0)∧ ((f ∗ g)(b) = 0); (2) as
f(a) = 0⇔ (x− a) | f , duplicate elements from each multiset are preserved: (f(a) = 0) ∧ (g(a) =
0)→ (x− a)2 | (f ∗ g). In addition, we prove that, given f ∗ g, one cannot learn more information
about S and T than what can be deduced from S ∪T , as formally stated in the following theorem:

Theorem 1. Let TTP1 be a trusted third party which receives the private input multiset Si from
player i for 1 ≤ i ≤ n, and then returns to every player the union multiset S1 ∪ · · · ∪ Sn directly.
Let TTP2 be another trusted third party, which receives the private input multiset Si from player i
for 1 ≤ i ≤ n, and then: (1) calculates the polynomial representation fi for each Si; (2) computes
and returns to every player

∏n
i=1 fi.

There exists a PPT translation algorithm such that, to each player, the results of the following
two scenarios are distributed identically: (1) applying translation to the output of TTP1; (2)
returning the output of TTP2 directly.

6

Proof. Theorem 1 is trivially true. (This theorem is included for completeness.)

Intersection. We define the intersection of multisets S ∩ T as the multiset where each element
a that appears in S bS > 0 times and T bT > 0 times appears in the resulting multiset min{bS , bT }
times. Let S and T be two multisets of equal size, and f and g be their polynomial representations
respectively. We compute the polynomial representation of S ∩ T as:

f ∗ r + g ∗ s

where r, s ← Rdeg(f)[x], where Rb[x] is the set of all polynomials of degree 0, . . . , b with coeffi-
cients chosen independently and uniformly from R: r =

∑β
i=0 r[i]xi and s =

∑β
i=0 s[i]xi, where

∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R.
We show below that f ∗ r + g ∗ s is a polynomial representation of S ∩ T . In addition, we prove

that, given f ∗ r + g ∗ s, one cannot learn more information about S and T than what can be
deduced from S ∩ T , as formally stated in Theorem 3.

First, we must prove the following lemma:

Lemma 2. Let f̂ , ĝ be polynomials in R[x] where R is a ring, deg(f̂) = deg(ĝ) = α, and
gcd(f̂ , ĝ) = 1. Let r =

∑β
i=0 r[i]xi, and s =

∑β
i=0 s[i]xi, where ∀0≤i≤β r[i] ← R, ∀0≤i≤β s[i] ← R

(independently) and β ≥ α.
Let û = f̂ ∗ r + ĝ ∗ s =

∑α+β
i=0 u[i]xi. Then ∀0≤i≤α+β û[i] are distributed uniformly and indepen-

dently over R.

We give a proof of Lemma 2 in Appendix B.
By this lemma, f ∗ r + g ∗ s = gcd(f, g) ∗ u, where u is distributed uniformly in Rγ [x] for

γ = 2 deg(f) − |S ∩ T |. Note that a is a root of gcd(f, g) and (x − a)`a | gcd(f, g) if and only
if a appears `a times in S ∩ T . Moreover, because u is distributed uniformly in Rγ [x], with
overwhelming probability the roots of u do not represent any element from P (as explained in the
beginning of Section 4). Thus, the computed polynomial f ∗ r +g ∗s is a polynomial representation
of S ∩T . Note that this technique for computing the intersection of two multisets can be extended
to simultaneously compute the intersection of an arbitrary number of multisets in a similar manner.
Also, given f ∗r+g∗s, one cannot learn more information about S and T than what can be deduced
from S ∩ T , as formally stated in the following theorem:

Theorem 3. Let TTP1 be a trusted third party which receives the private input multiset Si from
player i for 1 ≤ i ≤ n, and then returns to every player the intersection multiset S1 ∩ · · · ∩ Sn

directly. Let TTP2 be another trusted third party, which receives the private input multiset Si from
player i for 1 ≤ i ≤ n, and then: (1) calculates the polynomial representation fi for each Si; (2)
chooses ri ← Rk[x]; (3) computes and returns to each player

∑n
i=1 fi ∗ ri.

There exists a PPT translation algorithm such that, to each player, the results of the following
two scenarios are distributed identically: (1) applying translation to the output of TTP1; (2)
returning the output of TTP2 directly.

Proof sketch. Let the output of TTP1 be denoted T . The translation algorithm operates as follows:
(1) calculates the polynomial representation g of T ; (2) chooses the random polynomial u ←
R2k−|T |[x]; (3) computes and returns g ∗ u.

7

Element Reduction. We define the operation of element reduction (by d) of multiset S (denoted
Rdd(S)) as follows: for each element a that appears b times in S, it appears max{b− d, 0} times in
the resulting multiset. We compute the polynomial representation of Rdd(S) as:

f (d) ∗ F ∗ r + f ∗ s

where r, s← Rdeg(f)[x] and F is any polynomial of degree d, such that ∀a∈P F (a) 6= 0. Note that
a random polynomial of degree d in R[x] has this property with overwhelming probability.

To show that formal derivative operation allows element reduction, we require the following
lemma:

Lemma 4. Let f ∈ R[x], where R is a ring, d ≥ 1.

1. If (x− a)d+1 | f , then (x− a) | f (d).
2. If (x− a) | f and (x− a)d+1 6 | f , then (x− a) 6 | f (d).

Lemma 4 is a standard result [27]. By this lemma and gcd(F, f) = 1, an element a is a
root of gcd(f (d), f) and (x − a)`a | gcd(f (d), f) if and only if a appears `a times in Rdd(S). By
Lemma 2, f (d) ∗ F ∗ r + f ∗ s = gcd(f (d), f) ∗ u, where u is distributed uniformly in Rγ [x] for
γ = 2k − |Rdd(S)|. Thus, with overwhelming probability, any root of u does not represent any
element from P . Therefore, f (d) ∗ F ∗ r + f ∗ s is a polynomial representation of Rdd(S), and
moreover, given f (d) ∗ F ∗ r + f ∗ s, one cannot learn more information about S than what can be
deduced from Rdd(S), as formally stated in the following theorem:

Theorem 5. Let F be a publicly known polynomial of degree d such that ∀a∈P F (a) 6= 0. Let TTP1
be a trusted third party which receives a private input multiset S, and then returns the reduction
multiset Rdd(S) directly. Let TTP2 be another trusted third party, which receives a private input
multiset S, and then: (1) calculates the polynomial representation f of S; (2) chooses r, s← Rk[x];
(3) computes and returns f (d) ∗ F ∗ r + f ∗ s.

There exists a PPT translation algorithm such that the results of the following two scenarios are
distributed identically: (1) applying translation to the output of TTP1; (2) returning the output of
TTP2 directly.

Proof sketch. Let the output of TTP1 be denoted T . The translation algorithm operates as follows:
(1) calculates the polynomial representation g of T ; (2) chooses the random polynomial u ←
R2k−|T |[x]; (3) computes and returns g ∗ u.

4.2.2 Operations with Encrypted Polynomials

In the previous section, we prove the security of our polynomial-based multiset operators when the
polynomial representation of the result is computed by a trusted third party (TTP2). By using
additively homomorphic encryption, we allow these results to be implemented as protocols in the
real world without a trusted third party (i.e., the polynomial representation of the set operations is
computed by the parties collectively without a trusted third party). In the algorithms given above,
there are three basic polynomial operations that are used: addition, multiplication, and the formal
derivative. We give algorithms in this section for computation of these operations with encrypted
polynomials.

For f ∈ R[x], we represent the encryption of polynomial f , Epk(f), as the ordered
list of the encryptions of its coefficients under the additively homomorphic cryptosystem:

8

Epk(f [0]), . . . , Epk(f [deg(f)]). Let f1, f2, and g be polynomials in R[x] such that f1(x) =∑deg(f1)
i=0 f1[i]xi, f2(x) =

∑deg(f2)
i=0 f2[i]xi, and g(x) =

∑deg(g)
i=0 g[i]xi. Let a, b ∈ R. Using the ho-

momorphic properties of the homomorphic cryptosystem, we can efficiently perform the following
operations on encrypted polynomials without knowledge of the private key:

• Sum of encrypted polynomials: given the encryptions of the polynomial f1 and f2, we can
efficiently compute the encryption of the polynomial g := f1 + f2, by calculating Epk(g[i]) :=
Epk(f1[i]) +h Epk(f2[i]) (0 ≤ i ≤ max{deg(f1),deg(f2)})
• Product of an unencrypted polynomial and an encrypted polynomial: given a polynomial f2

and the encryption of polynomial f1, we can efficiently compute the encryption of polynomial
g := f1 ∗ f2, (also denoted f2 ∗h Epk(f1)) by calculating the encryption of each coefficient
Epk(g[i]) := (f2[0] ×h Epk(f1[i])) +h (f2[1] ×h Epk(f1[i−1])) +h . . . +h (f2[i] ×h Epk(f1[0]))
(0 ≤ i ≤ deg(f1) + deg(f2)).

• Derivative of an encrypted polynomial: given the encryption of polynomial f1, we can ef-
ficiently compute the encryption of polynomial g := d

dxf1, by calculating the encryption of
each coefficient Epk(g[i]) := (i + 1) ×h Epk(f1[i + 1]) (0 ≤ i ≤ deg(f1)− 1).
• Evaluation of an encrypted polynomial at an unencrypted point: given the encryption of

polynomial f1, we can efficiently compute the encryption of a := f1(b), by calculating
Epk(a) := (b0 ×h Epk(f1[0])) +h (b1 ×h Epk(f1[1])) +h . . . +h (bdeg(f1) ×h Epk(f1[deg(f1)])).

It is easy to see that with the above operations on encrypted polynomials, we can allow the
computation of the polynomial representations of set operations described in Section 4.2.1 without
the trusted third party (TTP2) while enjoying the same security. We demonstrate this property
with concrete examples detailed in the remainder of this paper.

4.3 Overview of Applications

The techniques we introduce for privacy-preserving computations of multiset operations have many
applications. We give several concrete examples that utilize our techniques for specific privacy-
preserving functions on multisets in the following sections.

First, we design efficient protocols for the Set-Intersection and Cardinality Set-Intersection
problems, secure against honest-but-curious adversaries (Section 5). We then provide an efficient
protocol for the Over-Threshold Set-Union problem, as well as three variants of the Threshold Set-
Union problem, secure against honest-but-curious adversaries, in Section 6. We introduce tools and
protocols, secure against malicious players, for the Set-Intersection, Cardinality Set-Intersection,
and Over-Threshold Set-Union problems in Section 7. We propose an efficient protocol for the
Subset problem in Section 8.2.

More generally, our techniques allow private computation of functions based on composition of
the union, intersection, and element reduction operators. We discuss techniques for this general
private computation on multisets in Section 8.1.

Our techniques are widely applicable, even outside the realm of computation of functions over
multisets. As an example, we show how to apply our techniques to private evaluation of boolean
formulas in CNF form in Section 8.3.

9

Protocol: Set-Intersection-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key to a homomorpic cryptosystem.

1. Each player i = 1, . . . , n

(a) calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c∗ri,i−c+· · ·+fi−1∗ri,i−1+

fi ∗ ri,0, utilizing the algorithms given in Sec. 4.2.2.

2. Player 1 sends the encryption of the polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing the

algorithms given in Sec. 4.2.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∑n

i=1 fi ∗(∑c
j=0 ri+j,j

)
to all other players.

5. All players perform a group decryption to obtain the polynomial p.

Each player i = 1, . . . , n determines the intersection multiset as follows: for each a ∈ Si, he
calculates b such that (x − a)b|p ∧ (x − a)b+1 6 |p. The element a appears b times in the
intersection multiset.

Figure 1: Set-Intersection protocol for the honest-but-curious case.

5 Application I: Private Set-Intersection and Cardinality Set-
Intersection

In this section, we design protocols for Set-Intersection and Cardinality Set-Intersection, secure
against a coalition of honest-but-curious adversaries.

5.1 Set-Intersection

Problem Definition. Let there be n parties; each has a private input set Si (1 ≤ i ≤ n) of size
k. We define the Set-Intersection problem as follows: all players learn the intersection of all private
input multisets without gaining any other information; that is, each player learns S1∩S2∩· · ·∩Sn.

Our protocol for the honest-but-curious case is given in Fig. 1. In this protocol, each player i
(1 ≤ i ≤ n) first calculates a polynomial representation fi ∈ R[x] of his input multiset Si. He then
encrypts this polynomial fi, and sends it to c other players i + 1, . . . , i + c. For each encrypted
polynomial Epk(fi), each player i + j (0 ≤ j ≤ c) chooses a random polynomial ri+j,j ∈ Rk[x].
Note that at most c players may collude, thus

∑c
j=0 ri+j,j is both uniformly distributed and known

to no player. They then compute the encrypted polynomial
(∑c

j=0 ri+j,j

)
∗h Epk(fi). From

these encrypted polynomials, the players compute the encryption of p =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
.

10

All players engage in group decryption to obtain the polynomial p. Thus, by Theorem 3, the
players have privately computed p, a polynomial representing the intersection of their private input
multisets. Finally, to reconstruct the multiset represented by polynomial p, the player i, for each
a ∈ Si, calculates b such that (x − a)b|p ∧ (x − a)b+1 6 |p. The element a appears b times in the
intersection multiset.

Security Analysis. We show that our protocol is correct, as each player learns the appropriate
answer set at its termination, and secure in the honest-but-curious model, as no player gains
information that it would not gain when using its input in the ideal model. A formal statement of
these properties is as follows:

Theorem 6. In the Set-Intersection protocol of Fig. 1, every player learns the intersection of all
players’ private inputs, S1 ∩ S2 ∩ · · · ∩ Sn, with overwhelming probability.

Theorem 7. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure, with overwhelming probability, in the Set-Intersection protocol of Fig. 1, any coalition
of fewer than n PPT honest-but-curious players learns no more information than would be gained
by using the same private inputs in the ideal model with a trusted third party.

We provide proof sketches for Theorems 6 and 7 in Appendix C.1.

5.2 Cardinality Set-Intersection

Problem Definition. We define the Cardinality Set-Intersection problem on sets as follows: each
player learns the number of unique elements in S1∩· · ·∩Sn, without learning any other information.
A variant of this problem is the Cardinality Set-Intersection problem on multisets, which we define
as follows: all players learn |S1 ∩ · · · ∩ Sn|, as computed on multisets.

Our protocol for Cardinality Set-Intersection, given in Figure 2, proceeds as our protocol for
Set-Intersection, until the point where all players learn the encryption of p, the polynomial repre-
sentation of S1 ∩ · · · ∩ Sn. Each player i = 1, . . . , n then evaluates this encrypted polynomial at
each unique element a ∈ Si, obtaining βa, an encryption of p(a). He then blinds each encrypted
evaluation p(a) by calculating β′

a = ba ×h βa. All players then distribute and shuffle the ciphertexts
β′

a constructed by each player, such that all players receive all ciphertexts, without learning their
source. The Shuffle protocol can be easily accomplished with standard techniques [5, 18, 9, 14, 25],
with communication complexity at most O(n2k). The players then decrypt these ciphertexts, find-
ing that nb of the decryptions are 0, implying that there are b unique elements in S1 ∩ · · · ∩ Sn.
FNP utilize a variation of this technique [13], but it is not obvious how to construct a multiparty
Cardinality Set-Intersection protocol from their techniques.

Variants. Our protocol can be simply extended to privately compute the Cardinality Set-
Intersection problem on multisets, by utilizing an encoding as follows: any element a that appears b
times in a multiset is encoded as the set: {a || 1, . . . , a || b}, with element included only once. Note
that this is a set of equivalent size as the original multiset representation, so this variant preserves
the efficiency of our protocol.

11

Protocol: Cardinality-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key to a homomorpic cryptosystem.

1. Each player i = 1, . . . , n

(a) calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 random polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c∗ri,i−c+· · ·+fi−1∗ri,i−1+

fi ∗ ri,0, utilizing the algorithms given in Sec. 4.2.2.

2. Player 1 sends the encrypted polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing the

algorithms given in Sec. 4.2.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∑n

i=1 fi ∗(∑c
j=0 ri+j,j

)
to all other players.

5. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial p at each input (Si)j , obtaining
encrypted elements Epk(cij) where cij = p((Si)j), using the algorithm given in
Sec. 4.2.2.

(b) for each j = 1, . . . , k chooses a random number rij ← R and calculates an
encrypted element (Vi)j = rij ×h Epk(cij)

6. All players perform the Shuffle protocol on their private input sets Vi, obtaining a
joint set V , in which all ciphertexts have been re-randomized.

7. All players 1, . . . n decrypt each element of the shuffled set V

If nb of the decrypted elements from V are 0, then the size of the set intersection is b.

Figure 2: Cardinality set-intersection protocol for the honest-but-curious case.

Security Analysis. We show that our protocol is correct, as each player learns the size of the
answer set at its termination, and secure in the honest-but-curious model, as no player gains
information that it would not gain when using its input in the ideal model. A formal statement of
these properties is as follows:

Theorem 8. In the Cardinality Set-Intersection protocol of Fig. 2, every player learns the size of
the intersection of all players’ private inputs, |S1 ∩ S2 ∩ · · · ∩ Sn|, with overwhelming probability.

Theorem 9. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is semanti-
cally secure and that the Shuffle protocol is secure, with overwhelming probability, in the Cardinality
Set-Intersection protocol of Fig. 2, any coalition of fewer than n PPT honest-but-curious players
learns no more information than would be gained by using the same private inputs in the ideal
model with a trusted third party.

We provide proof sketches for Theorems 8 and 9 in Appendix C.2.

12

5.3 Malicious Case.

We can extend our protocols in Figures 1 and 2, secure against honest-but-curious players, to
protocols secure against malicious adversaries by adding zero-knowledge proofs or using cut-and-
choose to ensure security. We give details of our protocols secure against malicious adversaries
in Section 7.2. We prove security against malicious parties for these protocols in Appendices C.1
and C.2.

6 Application II: Private Over-Threshold Set-Union and Thresh-
old Set-Union

In this section, we design protocols for the Over-Threshold Set-Union problem and several variations
of the Threshold Set-Union problem, secure against a coalition of honest-but-curious adversaries.

6.1 Over-Threshold Set-Union Protocol

Problem Definition. Let there be n players; each has a private input set Si (1 ≤ i ≤ n) of size
k. We define the Over-Threshold Set-Union problem as follows: all players learn which elements
appear in the union of the players’ private input multisets at least a threshold number t times,
and the number of times these elements appeared in the union of players’ private inputs, without
gaining any other information. For example, assume that a appears in the combined private input
of the players 15 times. If t = 10, then all players learn a has appeared 15 times. However, if t = 16,
then no player learns a appears in any player’s private input. This problem can be computed as
Rdt−1(S1 ∪ · · · ∪ Sn).

We describe our protocol secure against honest-but-curious players for the Over-Threshold Set-
Union problem in Fig. 3. In this protocol, each player i (1 ≤ i ≤ n) first calculates fi, the
polynomial representation of its input multiset Si. All players then compute the encryption of
polynomial p =

∏n
i=1 fi, the polynomial representation of S1 ∪ · · · ∪ Sn. Players i = 1, . . . , c + 1

then each chooses random polynomials ri, si, and calculates the encryption of the polynomial F ∗
p(t−1) ∗ ri + p ∗ si as shown in Fig. 3. All players then calculate the encryption of the polynomial
Φ = F ∗p(t−1) ∗

(∑c+1
i=1 ri

)
+p∗

(∑c+1
i=1 si

)
and perform a group decryption to obtain Φ. As at most

c players may dishonestly collude, the polynomials
∑c+1

i=1 ri,
∑c+1

i=1 si are uniformly distributed and
known to no player. By Theorem 5, Φ is a polynomial representation of Rdt−1(S1 ∪ · · · ∪ Sn).

Each player i = 1, . . . , n then chooses bi,j ← R and computes ui,j = bi,j × Φ((Si)j) + (Si)j

(1 ≤ j ≤ k). Each element ui,j equals (Si)j if (Si)j ∈ Rdt−1(S1 ∪ · · · ∪ Sn), and is otherwise
uniformly distributed over R. The players then shuffle these elements ui,j , such that each player
learns all of the elements, but does not learn which player’s set they came from. The shuffle can
be easily accomplished with standard techniques [5, 18, 9, 14, 25], with communication complexity
at most O(n2k). The multiset formed by those shuffled elements that represent elements of P is
Rdt−1(S1 ∪ · · · ∪ Sn).

Security Analysis. We show that our protocol is correct, as each player learns the appropriate
answer set at its termination, and secure in the honest-but-curious model, as no player gains
information that it would not gain when using its input in the ideal model with a trusted third
party. A formal statement of these properties is as follows:

13

Protocol: Over-Threshold Set-Union-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key for a homomorphic cryptosystem. The threshold number
of repetitions at which an element appears in the output is t. F is a fixed polynomial of
degree t− 1 which has no roots representing elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 4.2.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculates the encryption of the t − 1th derivative of p, denoted p(t−1), by re-
peating the algorithm given in Sec. 4.2.2.

(b) chooses random polynomials ri, si ← Rnk[x]
(c) calculates the encryption of the polynomial p ∗ si + F ∗ p(t−1) ∗ ri and sends it

to all other players.

6. All players perform a group decryption to obtain the polynomial Φ = F ∗ p(t−1) ∗(∑c+1
i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
.

7. Each player i = 1, . . . , n, for each j = 1, . . . , k

(a) chooses a random element bi,j ← R
(b) calculates ui,j = bi,j × Φ((Si)j) + (Si)j

8. All players i = 1, . . . n perform the Shuffle protocol on the elements ui,j (1 ≤ j ≤ k),
such that each player obtains a joint set V .

Each element a ∈ P that appears b times in V is an element in the threshold set that
appears b times in the players’ private inputs.

Figure 3: Over-Threshold Set-Union protocol for the honest-but-curious case.

Theorem 10. In the Over-Threshold Set-Union protocol of Fig. 3, every honest-but-curious player
learns each element a which appears at least t times in the union of the n players’ private inputs,
as well as the number of times it so appears, with overwhelming probability.

Theorem 11. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure, with overwhelming probability, in the Over-Threshold Set-Union protocol of Fig. 3,
any coalition of fewer than n PPT honest-but-curious players learns no more information than
would be gained by using the same private inputs in the ideal model with a trusted third party.

We provide proof sketches for Theorems 10 and 11 in Appendix D.1.

14

6.2 Threshold Set-Union

Problem Definition. We define the Threshold Set-Union problem as follows: all players learn
which elements appear in the combined private input of the players at least a threshold number t
times. For example, assume that a appears in the combined private input of the players 15 times.
If t = 10, then all players learn a. However, if t = 16, then no player learns a. This problem
differs from the Over-Threshold Set-Union problem in that each player learns the elements of
Rdt−1(S1 ∩ · · · ∩ Sn), without learning how often each element appears.

We offer protocols for several variants on Threshold Set-Union: threshold contribution, perfect,
and semi-perfect. Threshold contribution allows for thresholds t ≥ 1, and each player learns only
those elements which appear both in his private input and the threshold set: player i (1 ≤ i ≤ n)
learns the elements of Si∩Rdt−1(S1∩· · ·∩Sn). Perfect threshold set-intersection allows for thresholds
t ≥ 1, and conforms exactly to the definition of threshold set-intersection. The semi-perfect variant
requires for security that t ≥ 2, and that the cheating coalition does not include any single element
more than t − 1 times in their private inputs. Note that the information illicitly gained by the
coalition when they include more than t− 1 copies of an element a is restricted to a possibility of
learning that there exists some other player whose private input contains a. We do not consider
the difference in security between the semi-perfect and perfect variants to be significant.

The protocols for the Threshold Set-Union problem, given in Figs. 4, 5, and 6, are identical to the
protocol for Over-Threshold Set-Union (given in Fig. 3) from step 1-5. We explain the differences
between the protocols for each variant: threshold contribution, semi-perfect, and perfect. Each
player constructs encryptions of the elements Φ((Si)j) from his private input set in step 6, and
continues as described below.

Threshold Contribution Threshold Set-Union. This protocol is given in Fig. 5. The play-
ers cooperatively decrypt the encrypted elements Φ((Si)j) ∗ (

∑n
`=1 b`,i,j). This decryption must

take place in such a way that only player i learns the element Φ((Si)j) ∗ (
∑n

`=1 b`,i,j). Typi-
cally, parties produce decryption shares and reconstruct the element from them; player i sim-
ply retains his decryption share, so that only he learns the decryption. Thus each player learns
which of his elements appear in the threshold set, since if (Si)j appears in the threshold set,
Φ((Si)j) ∗ (

∑n
`=1 b`,i,j) = 0. No player learns more information because if an element (Si)j is not

in the threshold set, Φ((Si)j) ∗ (
∑n

`=1 b`,i,j) is uniformly distributed.

Semi-Perfect Threshold Set-Union. This protocol is given in Fig. 4. The encrypted element
(Ui)j calculated from the encrypted evaluation of Φ((Si)j) is either: (1) an encryption of the private
input element (Si)j (if (Si)j is in the intersection set) or (2) an encryption of a random element
(otherwise). However, the player also constructs a corresponding encrypted tag for each (Ui)j , Tij .
We require that the cryptosystem used to construct these tags be key-private, so that the origin of
ciphertext pairs T,U cannot be ascertained by the key used to construct the tags.

The players then correctly obtain a decryption of each element in the threshold set exactly once.
Any other time a ciphertext U for an element in the threshold set is decrypted, a player sabotages
it. In group decryption schemes, players generally produce shares of the decrypted element; if one
player sends a uniformly generated share instead of a valid one, the decrypted element is uniform. If
the decrypted element is uniform, it conveys no information to the players. To ensure an encryption
of an element in the threshold set is not decrypted once the element is known to be in the threshold
set, a player sabotages the decryption under the following conditions: (1) he can decrypt the tag

15

Protocol: Threshold-SemiPerfect-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key for a homomorphic cryptosystem. The threshold number
of repetitions at which an element appears in the output is t. F is a fixed polynomial of
degree t− 1 which has no roots representing elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 4.2.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 4.2.2.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ = p ∗
(∑c+1

i=1 ri

)
+ F ∗ p(t−1) ∗(∑c+1

i=1 si

)
at each input (Si)j , obtaining encrypted elements Epk(cij) where

cij = Φ((Si)j), using the algorithm given in Sec. 4.2.2.
(b) for each j = 1, . . . , k calculates an encrypted tag Tij = Enci(h((Si)j) || (Si)j)
(c) for each j = 1, . . . , k chooses a random number rij ← R and calculates an

encrypted element Uij = (rij ×h Epk(cij)) +h Epk((Si)j)
(d) constructs the set Vi = {(Tij || Uij) | 1 ≤ j ≤ k}

7. By using the Shuffle protocol, players perform shuffling on their private input sets Vi.
8. For each shuffled element T || U in sorted order, each player i = 1, . . . , n

(a) if Di(T) = h(a) || a for some a

i. if a has previously been revealed to be in the threshold set, then calculate
an incorrect decryption share of U , and send it to all other players

(b) else calculate a decryption share of U , and send it to all other players
(c) reconstruct the decryption of U . If the element a ∈ P , then a is in the threshold

result set

Figure 4: Threshold Set-Union protocol for the honest-but-curious case (semi-perfect variant).

to h(a) || a for some a and (2) a has already been determined to be a member of the threshold set.
All other ciphertexts should be correctly decrypted; either they are encryptions of elements in the
threshold set which have not yet been decrypted, or they are encryptions of random elements.

Note that the protocol is the only protocol proposed in this paper with a non-constant number

16

Protocol: Threshold-Contribution-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key for a homomorphic cryptosystem. The threshold number of
repetitions at which an element appears in the output is t. F is a fixed polynomial of degree
t − 1 which has no roots representing elements of P . The threshold number of repetitions
at which an element appears in the output is t ≥ 2. F is a fixed polynomial of degree t− 1
which has no roots representing elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 4.2.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 4.2.2.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ = p ∗
(∑c+1

i=1 ri

)
+ F ∗ p(t−1) ∗(∑c+1

i=1 si

)
at each input (Si)j , obtaining encrypted elements Epk(cij) where

cij = Φ((Si)j), using the algorithm given in Sec. 4.2.2.
(b) sends the ciphertexts cij (1 ≤ j ≤ k) to all other players
(c) chooses a random element bi,j,` (1 ≤ j ≤ n, 1 ≤ ` ≤ k)
(d) for each ciphertext cj`, calculate bi,j,` ×h cj` (1 ≤ j ≤ n, 1 ≤ ` ≤ k)

7. The players i (1 ≤ i ≤ n) calculate Ujm = (
∑n

`=1 b`,j,m) ×h cjm (1 ≤ j ≤ n,
1 ≤ m ≤ k)

8. All players decrypt the ciphertexts Uij , so that only player i learns the decryption
ai,j .

For each player i (1 ≤ i ≤ n), if ai,j = 0 (1 ≤ j ≤ k), then (Si)j is in his result set.

Figure 5: Threshold Set-Union protocol for the honest-but-curious case (threshold contribution
variant).

of rounds. Because of the need to sabotage decryptions based on the results of past decryptions,
there are O(nk) rounds in this protocol.

Perfect Threshold Set-Union. This protocol is given in Fig. 6. Each player constructs the
encrypted elements (Ui)j from the encrypted evaluation of Φ((Si)j) as written in step 6 of Figure 4.

17

Protocol: Threshold-Perfect-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding, each with
a private input set Si, such that |Si| = k. The players share the secret key sk, to which pk
is the corresponding public key for a homomorphic cryptosystem. The threshold number of
repetitions at which an element appears in the output is t. F is a fixed polynomial of degree
t − 1 which has no roots representing elements of P . The threshold number of repetitions
at which an element appears in the output is t ≥ 2. F is a fixed polynomial of degree t− 1
which has no roots representing elements of P . IsEq(C,C ′) = 1 if the ciphertexts C,C ′

encode the same plaintext, and 0 otherwise.

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing the algo-

rithm given in Sec. 4.2.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to players
2, . . . , c + 1

5. Each player i = 1, . . . , c + 1

(a) calculate the encryption of the t−1th derivative of p, denoted p(t−1), by repeating
the algorithm given in Sec. 4.2.2.

(b) choose random polynomials ri, si ← Rnk[x]
(c) calculate the encryption of the polynomial p ∗ ri + F ∗ p(t−1) ∗ si and send it to

all other players

6. Each player i = 1, . . . , n

(a) evaluates the encryption of the polynomial Φ = p ∗
(∑c+1

i=1 ri

)
+ F ∗ p(t−1) ∗(∑c+1

i=1 si

)
at each input (Si)j , obtaining encrypted elements Epk(cij) where

cij = Φ((Si)j), using the algorithm given in Sec. 4.2.2, and sends them to all
players

(b) for each i′ = 1, . . . , n, j = 1, . . . , k chooses a random number ri′j ← R and
calculates an encrypted element Uij = (ri′j ×h Epk(ci′j)), and sends it to player
i′

(c) calculates the elements for j = 1, . . . , k
Uij = (r1j ×h Epk(c1j)) +h . . . +h (rnj ×h Epk(cnj)) +h Epk((Si)j)

(d) constructs the set Vi = {Uij | 1 ≤ j ≤ k}
7. By using the Shuffle protocol, all players perform shuffling on their private input sets

Vi, obtaining the set U ′.
8. For each shuffled ciphertext U ′

` with arbitrary ordering index ` ∈ [nk], the players
i = 1, . . . , n

(a) each player i chooses random elements qi,` ← R
(b) calculate W` = U ′

` +h Epk

(
(
∑n

i=1 qi,`) (IsEq(U ′
`, U

′
`−1) + · · ·+ IsEq(U ′

`, U
′
1))

)
9. All players 1, . . . , n decrypt each ciphertext W`, obtaining an element a` (1 ≤ ` ≤ nk).

If aj ∈ P (1 ≤ j ≤ k), then aj is a member of the result set.

Figure 6: Threshold Set-Union protocol for the honest-but-curious case (perfect variant).

18

The players then utilize the Shuffle protocol to anonymously distribute these elements. If an
element appears in the threshold set, then at least one encryption of it appears in the shuffled
ciphertexts. The players ensure in step 8 that all duplicates (ciphertexts of the same element)
except the first have a random element added to them. This disguises the number of players who
have each element of the threshold set in their private input. Let the shuffled ciphertexts U have
an arbitrary ordering U ′

1, . . . , U
′
nk. IsEq(C,C ′) = 1 if the ciphertexts C encode the same plaintext,

and 0 otherwise. (This calculation can be achieved with the techniques in [20].) The players
i ∈ [n] then choose random elements qi,` ← R (1 ≤ ` ≤ nk) and decrypt the ciphertexts W` =
U ′

` +h Epk

(
(
∑n

i=1 q`) (IsEq(U ′
`, U

′
`−1) + . . . IsEq(U ′

`, U
′
1))

)
. Thus, if U ′

` is a duplicate (encryption
of an element which also appeared early in the ordering), it has a uniformly distributed element
added to it, and conveys no information. Each element of the threshold set is decrypted exactly
once, and all players thus learn the threshold set.

Security Analysis. We show that our protocol is correct, as each player learns the appropriate
result set at its termination, and secure in the honest-but-curious model, as no player gains infor-
mation that it would not gain when using its input in the ideal model. A formal statement of these
properties is as follows:

Theorem 12. In the Threshold Contribution Threshold Set-Union protocol of Fig. 5, every player
i (1 ≤ i ≤ n) learns the set Si ∩ Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Theorem 13. In the Semi-Perfect Threshold Set-Union protocol of Fig. 4, each player i (1 ≤ i ≤ n)
learns the set Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Theorem 14. In the Perfect Threshold Set-Union protocol of Fig. 6, every player learns the set
Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Theorem 15. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure and that the Shuffle protocol is secure, with overwhelming probability, in the Threshold
Set-Union protocols of Figs. 4, 5, and 6, any coalition of fewer than n PPT honest-but-curious play-
ers learns no more information than would be gained by using the same private inputs in the ideal
model with a trusted third party.

We provide proof sketches for Theorems 12, 13, 14, and 15 in Appendix D.2.

6.3 Malicious Case

By adding zero-knowledge proofs to our Over-Threshold Set-Union protocol secure against honest-
but-curious adversaries, we extend our results to enable security against malicious adversaries. We
provide details of our protocol secure against malicious adversaries in Section 7.4, and proof of
security in Appendix D.1.

7 Set-Intersection, Cardinality Set-Intersection, and Over-
Threshold Set-Union for Malicious Parties

We extend the protocols for the Set-Intersection, Cardinality Set-Intersection, and Over-Threshold
Set-Union problems given in Sections 5 and 6 to obtain security against adversaries in the malicious

19

model. To obtain this result, we add zero-knowledge proofs, verified by all players, to ensure the
correctness of all computation. In this section, we first introduce notation for zero-knowledge
proofs, then give the protocols secure against malicious parties.

7.1 Tools

In this section, we describe cryptographic tools that we utilize in our protocols secure against
malicious players.

Zero-Knowledge Proofs. We utilize several zero-knowledge proofs in our protocols for the
malicious adversary model. We introduce the notation for these zero-knowledge proofs below; for
additively homomorphic cryptosystems such as Paillier, we can efficiently construct these zero-
knowledge proofs using standard constructions [6, 4].

• POPK{Epk(x)} denotes a zero-knowledge proof that given a public ciphertext Epk(x), the
player knows the corresponding plaintext x [7].

• ZKPK{f | p′ = f ∗h α} is shorthand notation for a zero-knowledge proof of knowledge that
the prover knows a polynomial f such that encrypted polynomial p′ = f ∗h α, given the
encrypted polynomials p′ and α.

• ZKPK{f | (p′ = f ∗h α) ∧ (y = Epk (f))} is the proof ZKPK{f | p′ = f ∗h α} with the ad-
ditional constraint that y = Epk(f) (y is the encryption of f), given the encrypted polynomial
p′, y, and α.

Equivocal Commitment. A standard commitment scheme allows parties to give a “sealed en-
velope” that can be later opened to reveal exactly one value. We use an equivocal commitment
scheme in our protocols secure against malicious players, such that the simulator can open the
‘envelope’ to an arbitrary value without being detected by the adversary [19, 23].

7.2 Set-Intersection Protocol for Malicious Adversaries

Our protocol for malicious parties performing Set-Intersection, given in Fig. 7, proceeds largely as
the protocol secure against honest-but-curious parties, which was given in Fig. 1. The commitments
to the data items Λ(ci,j) are purely for the purposes of a simulation proof. We add zero-knowledge
proofs to prevent three forms of misbehavior: choosing ciphertexts for the encrypted coefficients of
fi without knowledge of their plaintext, not performing the polynomial multiplication of fj ∗ ri,j

correctly, and not performing decryption correctly. We also constrain the leading coefficient of fi

to be 1 for all players, to prevent any player from setting their polynomial to 0; if fi = 0, every
element is a root, and thus it can represent an unlimited number of elements. We can thus detect
or prevent misbehavior from malicious players, forcing this protocol to operate like the honest-but-
curious protocol in Fig. 1. The protocol can gain efficiency by taking advantage of the maximum
coalition size c.

Our set-intersection protocol secure against malicious parties utilizes an expensive (O(k2) size)
zero-knowledge proof to prevent malicious parties from cheating when multiplying the polynomial
ri,j by the encryption of the polynomial fj . Each player i must commit to each polynomial ri,j

(1 ≤ i, j ≤ n), for purposes of constructing a zero-knowledge proof. We may easily replace this
proof with use of the cut-and-choose technique, which requires only O(k) communication.

20

Protocol: Set-Intersection-Mal
Input: There are n ≥ 2 players, each with a private input set Si, such that |Si| = k.
The players share the secret key sk, to which pk is the corresponding public key to a
homomorpic cryptosystem. The commitment scheme used in this protocol is a equivocal
commitment scheme.

All players verify the correctness of all proofs sent to them, and stop participating in the
protocol if any are not correct.

Each player i = 1, . . . , n:

1. (a) calculates the polynomial fi such that the k roots of the polynomial are the
elements of Si, as fi = (x− (Si)1) . . . (x− (Si)k)

(b) sends δi, the encryption of the polynomial fi to all other players along with
proofs of plaintext knowledge for all coefficients except the leading coefficient
(POPK{(δi)j}, 0 ≤ j < k).

(c) for 1 ≤ j ≤ n

i. chooses a random polynomial ri,j ← Rk[x]
ii. sends a commitment to Λ(ri,j) to all players, where Λ(ri,j) = Epk(ri,j)

2. for 1 ≤ j ≤ n

(a) opens the commitment to Λ(ri,j)
(b) verifies proofs of plaintext knowledge for the encrypted coefficients of fj

(c) sets the leading encrypted coefficient (for xk) to a known encryption of 1
(d) calculates µ, the encryption of the polynomial pi,j = fj ∗ ri,j with proofs of

correct multiplication ZKPK{ri,j | (µ = ri,j ∗h δj) ∧ (Λ(ri,j) = Epk (ri,j))} and
sends it to all other players

3. All players

(a) calculate the encryption of the polynomial p =
∑n

i=1

∑n
j=1 pi,j =

∑n
i=1 fi ∗(rj,i)

as in Sec. 4.2.2, and verifies all attached proofs
(b) perform a group decryption to obtain the polynomial p, and distribute proofs

of correct decryption

Each player i = 1, . . . , n determines the intersection multiset as follows: for each a ∈ Si, he
calculates b such that (x − a)b|p ∧ (x − a)b+1 6 |p. The element a appears b times in the
intersection multiset.

Figure 7: Set-Intersection protocol for the malicious case.

Security Analysis. We provide a simulation proof of this protocol’s security; an intermediary
G translates between the real wold with malicious, colluding PPT players Γ and the ideal world,
where a trusted third party computes the answer set. Our proof shows that no Γ can distinguish
between the ideal world and the real world, thus no information other than that in the answer set
can be gained by malicious players. A formal statement of our security property is as follows:

Theorem 16. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is se-
mantically secure, and the specified zero-knowledge proofs and proofs of correct decryption cannot
be forged, then in the Set-Intersection protocol for the malicious case in Fig. 7, for any coalition Γ
of colluding players (at most n−1 such colluding parties), there is a player (or group of players) G
operating in the ideal model, such that the views of the players in the ideal model is computationally

21

indistinguishable from the views of the honest players and Γ in the real model.

Proof of this theorem is given in Appendix C.1.

7.3 Cardinality Set-Intersection Protocol for Malicious Adversaries

We give a protocol, secure against malicious parties, to perform Cardinality Set-Intersection in
Fig. 8. It proceeds largely as the protocol secure against honest-but-curious parties, which was given
in Fig. 2. The commitments to the data items Λ(ri,j) are purely for the purposes of a simulation
proof. We add zero-knowledge proofs of knowledge to prevent five forms of misbehavior: choosing
fi without knowledge of its roots, choosing fi such that it is not the product of linear factors, not
performing the polynomial multiplication of fj ∗ ri,j correctly, not calculating encrypted elements
(Vi)j correctly (either not from the data items (Si)j or not evaluating the encrypted polynomial p),
and not performing decryption correctly. We can thus detect or prevent misbehavior from malicious
players, forcing this protocol to operate like the honest-but-curious protocol in Fig. 2.

Security Analysis. We provide a simulation proof of this protocol’s security; an intermediary
G translates between the real wold with malicious, colluding PPT players Γ and the ideal world,
where a trusted third party computes the answer set. Our proof shows that no Γ can distinguish
between the ideal world and the real world, thus no information other than that in the answer set
can be gained by malicious players. A formal statement of our security property is as follows:

Theorem 17. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure, the Shuffle protocol is secure, and the specified zero-knowledge proofs and proofs of
correct decryption cannot be forged, then in the Cardinality Set-Intersection protocol for the mali-
cious case in Fig. 8, for any coalition Γ of colluding players (at most n− 1 such colluding parties),
there is a player (or group of players) G operating in the ideal model, such that the views of the
players in the ideal model is computationally indistinguishable from the views of the honest players
and Γ in the real model.

Proof of this theorem is given in Appendix C.2.

7.4 Over-Threshold Set-Union Protocol for Malicious Adversaries

We give a protocol, secure against malicious parties, to perform Over-Threshold Set-Union in Fig. 9.
It proceeds largely as the protocol secure against honest-but-curious parties, which was given in
Fig. 3. The commitments to the data items Λ(ri,j) are purely for the purposes of a simulation
proof. We add zero-knowledge proofs of knowledge to prevent six forms of misbehavior: choosing
fi without knowledge of its roots, choosing fi such that it is not the product of linear factors,
not performing the polynomial multiplication of fj ∗ λj−1 correctly, not calculating αi = p ∗ ri or
βi = p(t−1) ∗ si correctly, not calculating encrypted elements (Vi)j correctly (either not from the
data items (Si)j or not evaluating the encrypted polynomial Φ), and not performing decryption
correctly. We can thus detect or prevent misbehavior from malicious players, forcing this protocol
to operate like the honest-but-curious protocol in Fig. 3.

22

Protocol: Cardinality-Mal
Input: There are n ≥ 2 players, each with a private input set Si, such that |Si| = k.
The players share the secret key sk, to which pk is the corresponding public key to a
homomorpic cryptosystem. The commitment scheme used in this protocol is a equivocal
commitment scheme.

All players verify the correctness of all proofs sent to them, and stop participating in the
protocol if any are not correct.

Each player i = 1, . . . , n:

1. (a) calculates the polynomial fi such that the k roots of the polynomial are the
elements of Si, as fi = (x− (Si)1) . . . (x− (Si)k)

(b) sends:
i. encrypted elements yi,1 = Epk((Si)1), . . . , yi,k = Epk((Si)k) to all other

players, along with proofs of plaintext knowledge (POPK{Epk(yi,j)}, 1 ≤
j < k)

ii. sends δi, the encryption of the polynomial fi to all
other players, along with a proof of correct construction

ZKPK

a1, . . . , ak

∣∣∣∣∣∣
τi = ((x− a1) ∗h . . . ∗h (x− ak−1) ∗h α)

∧ yi,1 = Epk(a1) ∧ · · · ∧ yi,k = Epk(ak)
∧ α = Epk(x− ak)

(c) for 1 ≤ j ≤ n

i. chooses a random polynomial ri,j ← Rk[x]
ii. sends a commitment to Λ(ri,j) to all players, where Λ(ri,j) = Epk(ri,j)

2. for 1 ≤ j ≤ n

(a) opens the commitment to Λ(ri,j)
(b) verifies proofs of plaintext knowledge for the encrypted coefficients of fj

(c) sets the leading encrypted coefficient (for xk) to a known encryption of 1
(d) calculates τi,j , the encryption of the polynomial pi,j = fj ∗ ri,j , with proofs

of correct multiplication ZKPK{ri,j | (τi,j = ri,j ∗h δj) ∧ (Λ(ri,j) = Epk (ri,j))}
and sends it to all other players

3. Each player i = 1, . . . , n:

(a) calculates µ, the encryption of the polynomial p =
∑n

i=1

∑n
j=1 pi,j , as in

Sec. 4.2.2, and verifies all attached proofs
(b) evaluates the encryption of the polynomial p at each input (Si)j , obtaining

encrypted elements Epk(cij) where cij = p((Si)j), using the algorithm given in
Sec. 4.2.2.

(c) for each j ∈ [k] chooses a random element rij , calculates an encrypted el-
ement (Vi)j = rij ×h Epk(cij), with attached proof of correct construc-
tion ZKPK{(rij , z) | ((Vi)j = rij ×h µ(z)) ∧ (yi,j = Epk(z))}, and sends the en-
crypted element (Vi)j and the proof of correct construction to all players

4. All players perform the Shuffle protocol on the sets Vi, obtaining a joint set V , in
which all ciphertexts have been re-randomized.

5. All players 1, . . . , n decrypt each element of the shuffled set V (and send proofs of
correct decryption to all other players)

If nb of the decrypted elements from V are 0, then the size of the set intersection is b.

Figure 8: Cardinality set-intersection protocol for the malicious case.

23

Protocol: OverThreshold-Mal
Input: There are n ≥ 2 players, c < n maliciously colluding, each with a private input set
Si, such that |Si| = k. The players share the secret key sk, to which pk is the corresponding
public key to a homomorpic cryptosystem. The commitment scheme used in this protocol is a
equivocal commitment scheme. The threshold number of repetitions at which an element appears in
the output is t. F is a fixed polynomial of degree t−1 which has no roots representing elements of P .

All players verify the correctness of all proofs sent to them, and refuse to participate in the protocol
if any are not correct.
Each player i = 1, . . . , n:

1. Each player i = 1, . . . , n calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
2. Players 1, . . . , c + 1 send commitments to yi,1, . . . , yi,k to all players, where yi,j = Epk((Si)j)

(1 ≤ j ≤ k). All players then open these commitments.
3. Player 1 sends to all other players: encrypted elements y1,1 = Epk((S1)1), . . . , y1,k =

Epk((S1)k), along with proofs of plaintext knowledge (POPK{Epk(y1,j)}, 1 ≤ j < k); τ1,
the encryption of the polynomial λ1 = f1 to all other players, along with a proof of correct

construction ZKPK

a1, . . . , ak

∣∣∣∣∣∣
τ1 = ((x− a1) ∗h . . . ∗h (x− ak−1) ∗h α)

∧ y1,1 = Epk(a1) ∧ · · · ∧ y1,k = Epk(ak)
∧ α = Epk(x− ak)

4. Each player i = 2, . . . , n

(a) receives τi, the encryption of the polynomial λi−1, from player i− 1
(b) sends to all other players: encrypted elements yi,1 = Epk((Si)1), . . . , yi,k = Epk((Si)k),

along with proofs of plaintext knowledge (POPK{Epk(yi,j)}, 1 ≤ j < k); τi, the en-
cryption of the polynomial λi = fi ∗ λi−1, along with a proof of correct construction

ZKPK
{

a1, . . . , ak

∣∣∣∣ τi = ((x− a1) ∗h . . . ∗h (x− ak) ∗h τi−1)
∧ yi,1 = Epk(a1) ∧ · · · ∧ yi,k = Epk(ak)

}
5. Each player i = 1, . . . , c + 1

(a) choose random polynomials ri, si ← Rk[x]
(b) calculate α the encryption of the t−1th derivative of p = λn, denoted p(t−1), by repeating

the algorithm given in Sec. 4.2.2.
(c) calculate αi, the encryptions of the polynomial p ∗ ri, and βi, the encryption of the

polynomial p(t−1) ∗ si and send it to all other players, along with proofs of correct
polynomial multiplication, ZKPK{ri | αi = ri ∗h τn }, ZKPK{si | βi = si ∗h τn }

6. Each player i = 1, . . . , n:

(a) calculates µ, the encryption of the polynomial Φ = F ∗p(t−1)∗
(∑c+1

i=1 ri

)
+p∗

(∑c+1
i=1 si

)
,

as in Sec. 4.2.2, and verifies all attached proofs
(b) evaluates the encryption of the polynomial Φ at each input (Si)j , obtaining encrypted

elements Epk(cij) where cij = p((Si)j), using the algorithm given in Sec. 4.2.2.
(c) for each j ∈ [k] chooses a random element rij ← R, calculates an encrypted ele-

ment (Vi)j = (rij ×h Epk(cij)) + (Si)j , with attached proof of correct construction
ZKPK{(rij , z) | ((Vi)j = (rij ×h µ(z)) + z) ∧ (yi,j = Epk(z))}, and sends the encrypted
element (Vi)j and the proof of correct construction to all players

7. All players perform the Shuffle protocol on the sets Vi, obtaining a joint set V , in which all
ciphertexts have been re-randomized, then jointly decrypt each element of the shuffled set V
(and send proofs of correct decryption to all other players).

Each element a ∈ P that appears b times in V is an element in the threshold set that appears b
times in the players’ private inputs.

Figure 9: Over-threshold set-intersection protocol for the malicious case.
24

Security Analysis. We provide a simulation proof of this protocol’s security; an intermediary
G translates between the real wold with malicious, colluding PPT players Γ and the ideal world,
where a trusted third party computes the answer set. Our proof shows that no Γ can distinguish
between the ideal world and the real world, thus no information other than that in the answer set
can be gained by malicious players. A formal statement of our security property is as follows:

Theorem 18. Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure, the Shuffle protocol is secure, and the specified zero-knowledge proofs and proofs of
correct decryption cannot be forged, then in the Over-Threshold Set-Union protocol for the malicious
case in Fig. 8, for any coalition Γ of colluding players (at most n− 1 such colluding parties), there
is a player (or group of players) G operating in the ideal model, such that the views of the players
in the ideal model is computationally indistinguishable from the views of the honest players and Γ
in the real model.

Proof of this theorem is given in Appendix D.1.

8 Other Applications

Our techniques for privacy-preserving computation of multiset operations have wide applicability
beyond the protocols discussed earlier in Sections 5 and 6. We first discuss the composition of our
techniques to compute arbitrary functions based on the intersection, union, and reduction operators.
We also propose an efficient method for the Subset problem, determining whether A ⊆ B. As an
example of the application of our techniques to problems outside the realm of set computation, we
describe their use in evaluation of boolean formulas.

8.1 General Set Computation

Our techniques for privacy-preserving set operations can be arbitrarily composed to enable a wide
range of privacy-preserving set computations. In particular, we give a grammar describing functions
on multisets that can be efficiently computed using our privacy-preserving operations:

Υ ::= s | Rdd(Υ) | Υ ∩Υ | s ∪Υ | Υ ∪ s,

where s represents any multiset held by some player, and d ≥ 1. Note that any monotone function
on multisets can be expressed using the grammar above, and thus our techniques for privacy-
preserving set operations are truly general.

It is worth noting that the above grammar only allows computation of the union operator when
at least one of the two operands is a set known to some player. Although any monotone function
on sets can be described by our grammar, in some cases it is desirable (or more efficient) to enable
the calculation of the union operator on two sets calculated from other set operations, such that
neither operand is known to any player. In this case, we could calculate the union operation
in the following way. Let λ and Epk(f) be the encrypted polynomial representations of the two
multisets. The players use standard techniques to privately obtain additive shares f1, . . . , fν of f ,
given Epk(f). Using these shares, they then calculate (f1 ∗h λ) +h . . . +h (fν ∗h λ) = f ∗h λ, the
encryption of the polynomial representation of the union multiset.

25

8.2 Private Subset Relation

Problem Statement Let the set A be held by Alice. The set B may be the result of an arbitrary
function over multiple players’ input sets (for example as calculated using the grammar above).
The Subset problem is to determine whether A ⊆ B without revealing any additional information.

Let λ be the encryption of the polynomial p representing B. Note that A ⊆ B ⇔ ∀a∈A p(a) = 0.
Alice thus evaluates the encrypted polynomial λ at each element a ∈ A, homomorphically multiplies
a random element by each encrypted evaluation, and adds these blinded ciphertexts to obtain β′.
If β′ is an encryption of 0, then A ⊆ B. More formally:

1. For each element a = Aj (1 ≤ j ≤ |A|), the player holding A:

(a) calculates βj = λ(a)
(b) chooses a random element bj ← R, and calculates β′

j = bj ×h βj

2. The player holding A calculates β′ = β′
1 +h . . . +h β′

|A|
3. All players together decrypt β′ to obtain y. If y = 0, then A ⊆ B.

This protocol can be easily extended to allow the set A to be held by multiple players, such that
A = A1 ∪ · · · ∪Aν , where each set Ai is held by a single player.

8.3 Computation of CNF Formulas

Finally, we show that our techniques on private set operations have applications outside of the
realm of set computations. As a concrete example, we show that we can apply our techniques to
efficient privacy-preserving evaluation of boolean formulas, in particular, the conjunctive normal
form (CNF). A formula in CNF is a conjunction of a number of disjunctive clauses, each of which
is formed of several variables (or their negations).

Problem Statement Let φ be a public CNF boolean formula on variables V1, . . . , Vκ. Each
player knows the truth assignment to some subset of {V1, . . . , Vκ}, where each variable is known to
at least one player. The players cooperatively calculate the truth value of φ under this assignment,
without revealing any other information about the variable assignment.

We address this problem by introducing set representations of boolean formulas. Let True,
False be distinct elements of R (e.g., 0 and 1). For each variable in the formula, let the set
representation of the variable be { True} if its value is true, and { False} if its value is false.
Then, replace each ∨ operator in φ with a ∪ operator, and each ∧ operator with a ∩ operator. If
True is a member of the resulting set, then φ is true. The polynomial set representation of the
CNF formula can now be evaluated by the players through use of our privacy-preserving multiset
operations, as the function is described in the grammar given in Section 8.1.

We can also solve many variations of boolean formula evaluation using our techniques. For
example, we might require, instead of using the boolean operations, that at least t of the variables in
a clause be satisfied. Note that using our techniques can be more efficient than standard multiparty
techniques, as they require an expensive multiplication operation, involving all players, to compute
the ∧ operator [2, 16].

Acknowledgments:

26

We extend our thanks to Dan Boneh, Benny Pinkas, and David Molnar for their invaluable help
and comments on the content and presentation of this paper. We also extend our thanks to Luis
von Ahn, Lujo Bauer, David Brumley, Bryan Parno, Alina Oprea , Mike Reiter, and anonymous
reviewers for their comments.

References

[1] M. Ajtai, J. Komlos, and E. Szemeredi. An o(n logn) sorting network. In Proc. of STOC,
pages 1–9, 1983.

[2] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. of STOC, 1988.

[3] Fabirce Boudot, Berry Schoenmakers, and Jacques Traore. A fair and efficient solution to the
socialist millionaires’ problem. Discrete Applied Mathematics, 111:77–85, 2001.

[4] Jan Camenisch. Proof systems for general statements about discrete logarithms. Technical
Report 260, Dept. of Computer Science, ETH Zurich, Mar 1997.

[5] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM, 24:84–8, 1981.

[6] David Chaum, Jan-Hendrick Evertse, Jeroen van de Graaf, and Rene Peralta. Demonstrating
possession of a discrete log without revealing it. In A.M. Odlyzko, editor, Proc. of Crypto,
pages 200–212. Springer-Verlag, 1986.

[7] R. Cramer, I. Damg̊ard, and J. Buus Nielsen. Multiparty computation from threshold homo-
morphic encryption. In Proc. of Eurocrypt, pages 280–99. Springer-Verlag, 2001.

[8] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-party computation
from any linear secret sharing scheme. In Proc. of Eurocrypt. Springer-Verlag, May 2000.

[9] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. In Proc.
of Eurocrypt, pages 557–72. Springer-Verlag, 2000.

[10] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking it.
Communications of the ACM, 39:77–85, 1996.

[11] P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting of lotteries.
In Proc. of Financial Cryptography, 2000.

[12] Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems secure against chosen-
ciphertext attacks. In Proc. of Asiacrypt, pages 573–84, 2000.

[13] Michael Freedman, Kobi Nissim, and Benny Pinkas. Efficient private matching and set inter-
section. In Proc. of Eurocrypt, volume LNCS 3027, pages 1–19. Springer-Verlag, May 2004.

[14] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Proc. of Crypto, pages
368–87. Springer-Verlag, 2001.

27

[15] Rosario Gennaro and Victor Shoup. Securing threshold cryptosystems against chosen cipher-
text attack. Journal of Cryptology, 15:75–96, 2002.

[16] Oded Goldreich. The foundations of cryptography – volume 2.
http://www.wisdom.weizmann.ac.il/ oded/foc-vol2.html.

[17] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and Systems
Science, 28:270–99, 1984.

[18] M. Jakobsson. A practical mix. In Proc. of Eurocrypt, pages 448–61. Springer-Verlag, 1998.

[19] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Proc.
of Crypto. Springer-Verlag, 2004.

[20] Lea Kissner, Alina Oprea, Michael Reiter, Dawn Song, and Ke Yang. Private keyword-based
push and pull with applications to anonymous communication. In Applied Cryptography and
Network Security, 2004.

[21] Lea Kissner and Dawn Song. Private and threshold set-intersection. Technical Report CMU-
CS-05-113, Carnegie Mellon University, February 2005.

[22] Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In Proc.
of Asiacrypt, pages 416–33, 2003.

[23] Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In Proc. of
Eurocrypt, pages 382–400. Springer-Verlag, 2004.

[24] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proc. ACM
Symposium on Theory of Computing, pages 245–54, 1999.

[25] A. Neff. A verifiable secret shuffle and its application to e-voting. In ACM CCS, pages 116–25,
2001.

[26] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Proc. of Asiacrypt, pages 573–84, 2000.

[27] Victor Shoup. A computational introduction to number theory and algebra.
http://shoup.net/ntb/.

[28] Andrew C-C Yao. Protocols for secure computations. In Proc. of FOCS, 1982.

28

A Notation

• P – the set of elements which can be members of a private input set
• k – size of each private input set
• n – number of players participating in a protocol
• t – threshold number, an element must appear t times in the private input sets to be included

in the threshold set
• Epk(·) – encryption under the additively homomorphic, public key cryptosystem to which all

players share a secret key
• Epk(a) +h Epk(b) – combination of two ciphertexts (under the homomorphic cryptosystem)

to produce a re-randomized ciphertext which is the encryption of a + b
• a ×h Epk(b) – combination of an integer and a ciphertext (under the homomorphic cryptosys-

tem) to produce a re-randomized ciphertext which is the encryption of ab
• f ∗h Epk(g) – combination of two polynomials (under the homomorphic cryptosystem) to

produce a re-randomized encrypted polynomial which is the encryption of f ∗ g
• h(·) – a cryptographic hash function from {0, 1}∗ to {0, 1}` (` = lg

(
1
ε

)
), where ε is negligible.

• Rdd(S) denotes the element reduction by d of set S
• Ra[x] denotes the set of all polynomials of degree between 0 and a with coefficients from R
• [c] for an integer c denotes the set {1, . . . , c}
• a := b denotes that the variable a is given the value b
• a || b denotes a concatenated with b
• a← S denotes that element a is sampled uniformly from set S
• f ∗ g is the product of the polynomials f, g
• deg(p) is degree of polynomial p
• p(d) is the dth formal derivative of p
• gcd(p, q) is the greatest common divisor of p, q
• Si is the ith player’s private input set
• Vj is the jth element of the set V , under some arbitrary ordering

B Proof of Lemma

Theorem 2: Let f, g be polynomials in R[x] where R is a ring, deg(f) = deg(g) = α, and
gcd(f, g) = 1. Let r =

∑β
i=0 r[i]xi and s =

∑β
i=0 s[i]xi, where ∀0≤i≤β r[i] ← R, ∀0≤i≤β s[i] ← R

(independently) and β ≥ α.
Let u = f ∗ r + g ∗ s =

∑α+β
i=0 u[i]xi. Then ∀0≤i≤α+β u[i] are distributed uniformly and indepen-

dently over R.

Proof. For clarity, we give a brief outline of the proof before proceeding to the details. Given any
fixed polynomials f, g, u, we calculate the number z of r, s pairs such that f ∗ r +g ∗s = u. We may
then check that, given any fixed polynomials f, g, the total number of possible r, s pairs, divided
by z, is equal to the number of possible result polynomials u. This implies that, if gcd(f, g) = 1
and we choose the coefficients of r, s uniformly and independently from R, the coefficients of the
result polynomial u are distributed uniformly and independently over R.

We now determine the value of z, the number of r, s pairs such that f ∗ r + g ∗ s = u. Let us
assume that there exists at least one pair r̂, ŝ such that f ∗ r̂ + g ∗ ŝ = u. For any pair r̂′, ŝ′ such

29

that f ∗ r̂′ + g ∗ ŝ′ = u, then

f ∗ r̂ + g ∗ ŝ = f ∗ r̂′ + g ∗ ŝ′

f ∗ (r̂ − r̂′) = g ∗ (ŝ′ − ŝ)

As gcd(f, g) = 1, we may conclude that g|(r̂− r̂′) and f |(ŝ′− ŝ). Let p∗g = r̂− r̂′ and p∗f = ŝ′− ŝ.
We now show that each polynomial p, of degree at most β − α, determines exactly one unique
pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u. Note that r̂′ = r̂ − g ∗ p, ŝ′ = ŝ + f ∗ p; as we have fixed
f, g, r̂, ŝ, a choice of p determines both r̂′, ŝ′ . If these assignments were not unique, there would
exist polynomials p, p′ such that either r̂′ = r̂− g ∗ p = r̂− g ∗ p′ or ŝ′ = ŝ + f ∗ p = ŝ + f ∗ p′; either
condition implies that p = p′, giving a contradiction. Thus the number of polynomials p, of degree
at most β−α, is exactly equivalent to the number of r, s pairs such that f ∗ r + g ∗ s = u. As there
are |R|β−α+1 such polynomials p, z = |R|β−α+1.

We now show that the total number of r, s pairs, divided by z, is equal to the number of result
polynomials u. There are |R|2β+2 r, s pairs. As |R|2β+2

z = |R|2β+2

|R|β−α+1 = |R|α+β+1, and there are

|R|α+β+1 possible result polynomials, we have proved the theorem true.

C Proofs for Set-Intersection and Cardinality Set-Intersection
Protocols

C.1 Set-Intersection

In this section, we give proofs of security and correctness for our protocols for Set-Intersection in the
honest-but-curious and malicious cases. For simplicity, we give proof sketches for these theorems.

C.1.1 Honest-But-Curious Case

Theorem 6: In the Set-Intersection protocol of Fig. 1, every player learns the intersection of all
players’ private inputs, S1 ∩ S2 ∩ · · · ∩ Sn, with overwhelming probability.

Proof. Each player learns the decrypted polynomial p =
∑n

i=1 fi∗
(∑c

j=0 ri+j,j

)
. If ∀i∈[n] fi(a) = 0,

then p(a) = 0. As no elements that are not in every players’ private input can be in the set-
intersection of all private inputs, all elements in the set-intersection can be recovered by each
player. Each element in his private input that a root of p is a member of the intersection set.

We now show that, with high probability, erroneous elements are not inserted into the answer
set. By Theorem 2, the decrypted polynomial is of the form

(∏
a∈I(x− a)

)
∗s, where s is uniformly

distributed over R2k−|I|[x]. This random polynomial s is of polynomial size, and thus has a poly-
nomial number of roots. Each of these roots is a representation of an element from P with only
negligible probability. Thus, the probability that an erroneous element is included in the answer
set is also negligible, and all players learn exactly the intersection set.

Theorem 7: Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure, with overwhelming probability, in the Set-Intersection protocol of Fig. 1, any coalition
of fewer than n PPT honest-but-curious players learns no more information than would be gained
by using the same private inputs in the ideal model with a trusted third party.

30

Proof. We assume that the homomorphic cryptosystem (E,D) used in the protocol is in fact secure
as we required. Thus, as the inputs of the other players are all encrypted until the decryption is
performed, nothing can be learned by any player before that point. Each player j then learns only
the summed polynomial p =

∑n
i=1 fi ∗

(∑c
j=0 ri+j,j

)
.

Note that to every coalition of c players, for every i,
∑c

j=0 ri+j,j is completely random, as at
least one player in the c + 1 players who chose that random polynomial is not a member of the
coalition, and so

∑c
j=0 ri+j,j is uniformly distributed and unknown.

By Theorem 2, p =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
=

(∏
a∈I(x− a)

)
∗ s, where I is the intersection set

and s is uniformly distributed over the polynomials of appropriate degree. Thus no information
about the private inputs of the honest players can be recovered from p, other than that given by
revealing the intersection set.

C.1.2 Malicious Case

Theorem 16: Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is se-
mantically secure, and the specified zero-knowledge proofs and proofs of correct decryption cannot
be forged, then in the Set-Intersection protocol for the malicious case in Fig. 7, for any coalition Γ
of colluding players (at most n−1 such colluding parties), there is a player (or group of players) G
operating in the ideal model, such that the views of the players in the ideal model is computationally
indistinguishable from the views of the honest players and Γ in the real model.

Proof. In this simulation proof, we give an algorithm for a player G in the ideal model. This player
communicates with the malicious players Γ, pretending to be one or more honest players in such
a fashion that Γ cannot distinguish that he is not in the real world. We assume that all malicious
players can collude. The trusted third party takes the input from G and the honest parties, and
gives both G and the honest parties the intersection set. G then communicates with the malicious
players Γ, so they also learn the intersection set. A graphical representation of these players is
given in Figure 10

We give a sketch of how the player G operates (note that G can prevaricate when opening
commitments, as we use an equivocal commitment scheme, and can extract plaintext from proofs
of plaintext knowledge):

1. For each simulated honest player i, G:

(a) chooses a polynomial fi such that each such polynomial is relatively prime and has
leading coefficient 1 (for randomly generated polynomials with leading coefficient 1, this
is true with overwhelming probability)

(b) chooses arbitrary polynomials ri,1, . . . , ri,n and creates encryptions Λ(ri,j) from them (in
the case of Paillier, specially construct encryptions of those polynomials, and proofs of
knowledge of each coefficient, see Section 7.1)

2. Performs step 1 of the protocol:

(a) sends the encryption of fi to all malicious players Γ, along with proofs of plaintext
knowledge and commitments to Λ(ri,j) (1 ≤ j ≤ n)

(b) sends data items Λ(ri,j) (1 ≤ j ≤ n) to all malicious players Γ
(c) Receives from each malicious player α ∈ Γ:

i. encryption of a polynomial fα and proofs of plaintext knowledge for its coefficients

31

Trusted
third party

Honest
party

Honest
party

Private
input set

Private
input set

G communicates with the malicious parties Γ according to the protocol.
Using his special abilities as a simulator, he obtains their private input sets.
G then submits these sets to the trusted third party, and then communicates

the answer returned by the trusted third party to the malicious parties.

Malicious
party

Malicious
party

Malicious
party

Private input sets
of malicious parties Answer set

Answer set

Answer set

Figure 10: A simulation proof defines the behavior of the player G, who translates between the
malicious players Γ, who believe they are operating in the real model, and the ideal model, in which
the trusted third party computes the desired answer.

ii. trapdoor commitments to data items Λ(rα,j) for each random polynomial rα,j , 1 ≤
j ≤ n

3. The player G extracts from the proofs of plaintext knowledge and trapdoor commitments to
Λ(ri,j) (in the case of Paillier, the extraction is from the proof of knowledge of the discrete
logarithm), the polynomials fα, and the random polynomials rα,j the malicious players Γ
have chosen.

4. G obtains the roots of each polynomial fα (as these exactly determine, for the purposes of
the protocol, his set):

• If polynomial factoring is possible, G may factor fα. fα(a) = 0⇔ (x−a)|fα, so all roots
of fα may be determined by examining the linear factors.

• If we are working in the random oracle model, then, with overwhelming probability, to
correctly represent any element of the valid set P , a player must consult the random
oracle. As there can be only a polynomial number of such queries, for each query a, G
may check if fα(a || h(a)) = 0.
• If neither of these routes are feasible, then a proof that fα was constructed by multiplying

k linear factors of the form x − a may be added to the protocol instead of proofs of
plaintext knowledge. This proof is of size O(k3), and is constructed by using proofs of
plaintext knowledge for some linear factors, and layering proofs of correct multiplication
to obtain the complete polynomial fα. From this proof, each linear factor of fα can be

32

obtained, and thus all roots of fα.

5. G submits the sets represented by these roots to the trusted third party. The honest player
submit their private input sets to the trusted third party. The trusted third party returns
the intersection set I to G and the honest players.

6. G prepares to reveal the intersection set to the malicious players Γ:

(a) selects a target polynomial p =
(∏

a∈I(x− a)
)
∗s, where s is chosen uniformly from those

polynomials of degree 2k− |I|. (note that, by Theorem 2, this is exactly the polynomial
calculated by simply running the protocol)

(b) chooses a set of polynomials ri,j (where i is one of the simulated honest players) such that∑n
i=1 fi

(∑n
j=1 ri,j

)
= p (from the proof of Theorem 2, we know that such polynomials

exist, and can be determined through simple polynomial manipulation)

7. G follows the rest of the protocol with the malicious players Γ as written, except that he opens
the trapdoor commitment to reveal an appropriate Λ(ri,j) for the new chosen ri,j . In this
way, the players calculate an encryption of the polynomial p chosen by G, and then decrypt
it. The coalition players thus learn the intersection set.

Note that the dishonest players cannot distinguish that they are talking to G (who is working
in the ideal model) instead of other clients (in the real world), and the correct answer is learned by
all parties, in both the real and ideal models.

C.2 Cardinality Set-Intersection

In this section, we give proofs of security and correctness for our protocols for Set-Intersection in the
honest-but-curious and malicious cases. For simplicity, we give proof sketches for these theorems.

C.2.1 Honest-But-Curious Case

Theorem 8: In the Cardinality Set-Intersection protocol of Fig. 2, every player learns the size of
the intersection of all players’ private inputs, |S1 ∩ S2 ∩ · · · ∩ Sn|, with overwhelming probability.

Proof. Note that, following the proof of Theorem 6, p is a polynomial representation of the inter-
section multiset, with overwhelming probability. Each player evaluates p (encrypted) at each of
their inputs, then blinds it by homomorphically multiplying a random element by the encrypted
evaluation. Thus each resulting encrypted element (Vi)j (1 ≤ i ≤ n, 1 ≤ j ≤ k) is either 0,
representing some element of a private input set in the intersection set, or uniformly distributed,
representing some element not in the intersection set. An element is a member of S1∩· · ·∩Sn if and
only if each player holds it as part of their private input set, for each element of S1 ∩ · · · ∩Sn, there
are n encrypted evaluations that are 0. Thus, when the encrypted evaluations (Vi)j (1 ≤ i ≤ n,
1 ≤ j ≤ k) are shuffled and decrypted, there are exactly n|S1 ∩ · · · ∩ Sn| 0s, and thus all players
learn the size of the intersection set.

Theorem 9: Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is semanti-
cally secure and that the Shuffle protocol is secure, with overwhelming probability, in the Cardinality
Set-Intersection protocol of Fig. 2, any coalition of fewer than n PPT honest-but-curious players

33

learns no more information than would be gained by using the same private inputs in the ideal
model with a trusted third party.

Proof. We assume that the cryptosystem Epk(·) and Shuffle protocol are secure, so we may note
that no player or coalition of players learns any information from the protocol except the decryption
of the randomly-ordered set {(Vi)j}i∈[n],j∈[k]. As each element of that set is either 0 or a uniformly
distributed element, it conveys no information other than the statement ‘some player had an element
in their private input set that was/was not in the intersection set’. As this information precisely
constitutes the result of the Cardinality Set-Intersection problem, no additional information is
revealed.

C.2.2 Malicious Case

Theorem 17: Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure, the Shuffle protocol is secure, and the specified zero-knowledge proofs and proofs of
correct decryption cannot be forged, then in the Cardinality Set-Intersection protocol for the mali-
cious case in Fig. 8, for any coalition Γ of colluding players (at most n− 1 such colluding parties),
there is a player (or group of players) G operating in the ideal model, such that the views of the
players in the ideal model is computationally indistinguishable from the views of the honest players
and Γ in the real model.

Proof. The simulation proof of this theorem follows the proof of Theorem 16 with only small
changes; the additional zero-knowledge proofs in the protocol are generally irrelevant to the simu-
lator.

D Proofs for the Over-Threshold Set-Union and Threshold Set-
Union Protocols

D.1 Over-Threshold Set-Union

D.1.1 Honest-But-Curious Case

Theorem 10: In the Over-Threshold Set-Union protocol of Fig. 3, every honest-but-curious player
learns each element a which appears at least t times in the union of the n players’ private inputs,
as well as the number of times it so appears, with overwhelming probability.

Proof. All players calculate and decrypt Φ = F ∗ p(t−1) ∗
(∑c+1

i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
. As

∑c+1
i=1 ri

and
∑c+1

i=1 si are distributed uniformly over all polynomials of approximate size nk, Theorem 2 tells
us that Φ = gcd

(
p(t−1), p

)
∗ r, where r is a random polynomial of the appropriate size. As r has

only a polynomial number of roots, each of which has a negligable probability of representing a
member of P , when Φ is factored, gcd

(
p(t−1), p

)
can be recovered.

By Theorem 5, gcd
(
p(t−1), p

)
has roots which are exactly those that appear at least t times

in the players’ private inputs (the threshold set). The players calculate elements ui,j , which are
uniformly distributed if (Si)j is not a member of the threshold set, and (Si)j if it does appear in the
threshold set. These elements are shuffled and distributed to all players. Each reveals an element of
the private input, if that element is in the threshold set, and nothing otherwise. Thus each element
in the threshold intersection set is revealed as many times as it appeared in the private inputs.

34

Theorem 11: Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure, with overwhelming probability, in the Over-Threshold Set-Union protocol of Fig. 3,
any coalition of fewer than n PPT honest-but-curious players learns no more information than
would be gained by using the same private inputs in the ideal model with a trusted third party.

Proof. We assume that the cryptosystem employed is semantically secure, and so players learn only
the formula Φ = F ∗ p(t−1) ∗

(∑c+1
i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
. Note that both

∑c+1
i=1 ri and

∑c+1
i=1 si are

uniformly distributed and unknown to all players, as the maximum coalition size is smaller than
c + 1. Thus, by Theorem 2, Φ = gcd

(
p, p(t−1) ∗ F

)
∗ s, for some uniformly distributed polynomial

s. As s is uniformly distributed for any player inputs, no player or coalition can learn more than
gcd

(
p, p(t−1) ∗ F

)
. F is chosen such that gcd(p, F) = 1, and so gcd

(
p, p(t−1) ∗ F

)
= gcd

(
p, p(t−1)

)
.

As was observed in Theorem 10, this information exactly represents the threshold set, and can thus
be derived from the answer that would be returned by a trusted third party. Thus no player or
coalition of at most c players can learn more than in the ideal model.

Neither do the shuffled elements reveal additional information. As we assume the shuffling
protocol is secure, the origin of any element is not revealed. The elements revealed are exactly
those in the threshold set, each included as many times as it was included in the private inputs,
and thus also do not reveal information to any adversary.

D.1.2 Malicious Case

Theorem 18: Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is se-
mantically secure, the Shuffle protocol is secure, and the specified zero-knowledge proofs and proofs
of correct decryption cannot be forged, then in the Over-Threshold Set-Union protocol for the mali-
cious case in Fig. 8, for any coalition Γ of colluding players (at most n− 1 such colluding parties),
there is a player (or group of players) G operating in the ideal model, such that the views of the
players in the ideal model is computationally indistinguishable from the views of the honest players
and Γ in the real model.

Proof. In this simulation proof, we give an algorithm for a player G in the ideal model. This player
communicates with the malicious players Γ, pretending to be one or more honest players in such
a fashion that Γ cannot distinguish that he is not in the real world. We assume that all malicious
players can collude. The trusted third party takes the input from G and the honest parties, and
gives both G and the honest parties the intersection set. G then communicates with the malicious
players Γ, so they also learn the intersection set. A graphical representation of these players is
given in Figure 10.

We give a sketch of how the player G operates (note that G can prevaricate when opening
commitments, as we use an equivocal commitment scheme, and can extract plaintext from proofs
of plaintext knowledge):

1. For each simulated honest player i, G:

(a) chooses a set S′
i of arbitrary elements (S′

i)1, . . . , (S
′
i)k ∈ R

(b) Performs steps 1 − 2 of the protocol, sending equivocal commitments to the set Si for
each simulated honest player.

2. The player G extracts the private input sets chosen by Γ, for each malicious player, from the
equivocal commitments sent in step 2 of the protocol. G submits the sets extracted from

35

these commitments to the trusted third party. The honest player submit their private input
sets to the trusted third party. The trusted third party returns the result set I to G and the
honest players.

3. G prepares to reveal the intersection set to the malicious players Γ: G chooses new sets Si to
replace the sets S′

i used to construct the commitment. These sets are chosen to contain the
following elements:

(a) for each element a that appears b > 0 in I, and bΓ times in the private input multisets of
the malicious players (Γ), the element a is included b + t− 1− bΓ times in the multisets
Si

(b) all elements not specified by the prior rule are chosen uniformly from R

4. G follows the rest of the protocol with the malicious players Γ as written. The coalition
players thus learn the result set.

Note that the dishonest players cannot distinguish that they are talking to G (who is working
in the ideal model) instead of other clients (in the real world), and the correct answer is learned by
all parties, in both the real and ideal models.

D.2 Threshold Set-Union

Theorem 12: In the Threshold Contribution Threshold Set-Union protocol of Fig. 5, every player
i (1 ≤ i ≤ n) learns the set Si ∩ Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Proof. Note that the encrypted computation is performed in accordance with Theorems 3 and 5,
and thus the polynomial Φ is a polynomial representation of the multiset Rdt−1(S1 ∪ · · · ∪ Sn),
with overwhelming probability. Each player i (1 ≤ i ≤ n) constructs encrypted evaluations of
each a ∈ Si, which are them homomorphically multiplied by a uniformly distributed element by
all players. Thus, each ciphertext constructed in this fashion is either 0 (meaning a ∈ Rdt−1(S1 ∪
· · · ∪ Sn)) or uniformly distributed (meaning a 6∈ Rdt−1(S1 ∪ · · · ∪ Sn)). These ciphertexts are then
decrypted; thus, each player i learns which elements of his private input appear in the threshold
set Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Theorem 13: In the Semi-Perfect Threshold Set-Union protocol of Fig. 4, each player i (1 ≤ i ≤ n)
learns the set Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Proof. Following the proof of Theorem 12, the polynomial Φ is a polynomial representation of the
multiset Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability and each shuffled element T || U is
of one of the following forms:

• For some a ∈ S1 ∪ · · · ∪ Sn, 1 ≤ i ≤ n, T = Enci(h(a) || a), U is an Epk(a) – thus,
a ∈ Rdt−1(S1 ∪ · · · ∪ Sn)

• For some a ∈ S1 ∪ · · · ∪ Sn, 1 ≤ i ≤ n, T = Enci(h(a) || a), U is not an Epk(a) – thus,
a 6∈ Rdt−1(S1 ∪ · · · ∪ Sn)

The operation of Step 8 assures that for each a ∈ Rdt−1(S1 ∪ · · · ∪ Sn), a corresponding U is
correctly decrypted exactly once – all other decryptions of a are sabotaged to appear uniformly
distributed. Thus, all players learn the elements of the set Rdt−1(S1∪ · · ·∪Sn), with overwhelming
probability.

36

Theorem 14: In the Perfect Threshold Set-Union protocol of Fig. 6, every player learns the set
Rdt−1(S1 ∪ · · · ∪ Sn), with overwhelming probability.

Proof. Following the proof of Theorem 12, the polynomial Φ is a polynomial representation of the
multiset Rdt−1(S1∪· · ·∪Sn), with overwhelming probability and each shuffled (encrypted) element
U ′

` (1 ≤ ` ≤ nk) is of one of the following forms: a ∈ P (indicating that a ∈ Rdt−1(S1∪· · ·∪Sn)), or a
uniformly distributed element (which can be distinguished from a representation of an element of P
with overwhelming probability). Note that, if U ′

` is an encryption of an element a, and ¬∃`′∈[`−1] U ′
`′

such that U ′
`′ is also an encryption of a, then W` is also an encryption of a. (Otherwise, W` is an

encryption of a uniformly distributed element.)
This calculation results in a list of encrypted elements W`, each of which is of one of the following

forms: a ∈ P (indicating that both: a ∈ Rdt−1(S1 ∪ · · · ∪ Sn), and W` is with overwhelming
probability the only encryption of a in the list), or a uniformly distributed element. Thus, when
the players decrypt the list W`, they learn all elements of Rdt−1(S1 ∪ · · · ∪ Sn) exactly once, with
overwhelming probability.

Theorem 15: Assuming that the additively homomorphic, threshold cryptosystem Epk(·) is seman-
tically secure and that the Shuffle protocol is secure, with overwhelming probability, in the Threshold
Set-Union protocols of Figs. 4, 5, and 6, any coalition of fewer than n PPT honest-but-curious play-
ers learns no more information than would be gained by using the same private inputs in the ideal
model with a trusted third party.

Proof. Note that in the threshold contribution and perfect variants of Threshold Set-Union, all
data is encrypted until the final result sets are revealed through joint decryption. As shown in
Theorems 12 and 14, the final sets correspond exactly to the elements revealed (all elements that
are not in the result set are uniformly distributed over R, and thus hold no information), no
information except the result set is revealed to the players.

In the protocol for semi-perfect Threshold Set-Union, the result set is not decrypted all-at-once,
but one element at a time. Theorem 13 shows the the resulting elements correspond exactly to
the desired result set, but we must show that the behavior of each player during the process of
decryption yields no disallowed information. Note that we require for the security of this protocol
that a dishonest coalition hold no more than t−1 copies of any given element in their private input
sets.

When performing the decryption process, each player learns two pieces of information when
a result set element is revealed: the element, and whether the element revealed came from that
player’s own private input multiset. Each ciphertext is ‘tagged’, so each player can easily decide
whether they constructed that ciphertext. Thus, if a dishonest coalition held at least t copies of any
given element, they could determine that at least one other player also held a copy of that element,
revealing forbidden information. However, as we have precluded this situation, no information is
revealed; if a dishonest coalition holds t − 1 copies of an element which appears in the result set,
they already know that at least one other player holds it (otherwise it would not appear in the
result set!).

37

